rr.experiment.experiments module¶
-
rr.experiment.experiments.base_experiment(protocol, variables, filepath, nb_tree_per_forest=50, max_depth=10)¶ Basic test for the random forest classifier
- Parameters
- Returns
A 2D array (with a dtype of int) containing the confusion matrix.
- Return type
- Raises
None –
-
rr.experiment.experiments.experiment_impact_nb_trees(tabnum, filepath, nb_trees, max_depth, plot_path)¶ Evaluates the impact of the number of trees per forest on the classifiers performance
- Parameters
- Returns
experiment results
- Return type
- Raises
None –
-
rr.experiment.experiments.experiment_impact_tree_depth(tabnum, filepath, nb_trees, max_depths, plot_path)¶ Evaluates and the impact of the trees depth on the classifiers performance
- Parameters
- Returns
experiment results
- Return type
- Raises
None –
-
rr.experiment.experiments.pretty_confusion_matrix(cm)¶ Adds labels to confusion matrix
- Parameters
cm (numpy.ndarray) – A 2D array (with a dtype of int) containing the confusion matrix.
- Returns
nicely formatted confusion matrix for printing
- Return type
- Raises
None –