rr.experiment.algorithm module¶
-
class
rr.experiment.algorithm.Model(nb_tree_per_forest=50, max_depth=10)¶ Bases:
objectCreate a new ML model (Random forest classifier from scikitlearn)
- Parameters
- Returns
None
- Raises
None –
-
predict(X)¶ Make a prediction on the data using the trained model
- Parameters
X (numpy.ndarray) – A NxM 2D-array where each row corresponds to a sample and each column to a feature
- Returns
A 1D array (with a dtype of int) containing the predicted label for each sample
- Return type
- Raises
None –
-
train(X, y)¶ Train the model using the given data
- Parameters
X (numpy.ndarray) – A NxM 2D-array where each row corresponds to a sample and each column to a feature
y (numpy.ndarray) – A 1D-array of length N, where each element corresponds to a sample label
- Returns
None
- Raises
None –